The Stacks project

Lemma 18.14.1. Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be a ringed topos. The category $\textit{Mod}(\mathcal{O})$ is an abelian category. The forgetful functor $\textit{Mod}(\mathcal{O}) \to \textit{Ab}(\mathcal{C})$ is exact, hence kernels, cokernels and exactness of $\mathcal{O}$-modules, correspond to the corresponding notions for abelian sheaves.

Proof. Above we have seen that $\textit{Mod}(\mathcal{O})$ is an additive category, with kernels and cokernels and that $\textit{Mod}(\mathcal{O}) \to \textit{Ab}(\mathcal{C})$ preserves kernels and cokernels. By Homology, Definition 12.5.1 we have to show that image and coimage agree. This is clear because it is true in $\textit{Ab}(\mathcal{C})$. The lemma follows. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03DA. Beware of the difference between the letter 'O' and the digit '0'.