The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Definition 18.17.1. Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be a ringed topos. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules.

  1. We say $\mathcal{F}$ is a free $\mathcal{O}$-module if $\mathcal{F}$ is isomorphic as an $\mathcal{O}$-module to a sheaf of the form $\bigoplus _{i \in I} \mathcal{O}$.

  2. We say $\mathcal{F}$ is finite free if $\mathcal{F}$ is isomorphic as an $\mathcal{O}$-module to a sheaf of the form $\bigoplus _{i \in I} \mathcal{O}$ with a finite index set $I$.

  3. We say $\mathcal{F}$ is generated by global sections if there exists a surjection

    \[ \bigoplus \nolimits _{i \in I} \mathcal{O} \longrightarrow \mathcal{F} \]

    from a free $\mathcal{O}$-module onto $\mathcal{F}$.

  4. Given $r \geq 0$ we say $\mathcal{F}$ is generated by $r$ global sections if there exists a surjection $\mathcal{O}^{\oplus r} \to \mathcal{F}$.

  5. We say $\mathcal{F}$ is generated by finitely many global sections if it is generated by $r$ global sections for some $r \geq 0$.

  6. We say $\mathcal{F}$ has a global presentation if there exists an exact sequence

    \[ \bigoplus \nolimits _{j \in J} \mathcal{O} \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O} \longrightarrow \mathcal{F} \longrightarrow 0 \]

    of $\mathcal{O}$-modules.

  7. We say $\mathcal{F}$ has a global finite presentation if there exists an exact sequence

    \[ \bigoplus \nolimits _{j \in J} \mathcal{O} \longrightarrow \bigoplus \nolimits _{i \in I} \mathcal{O} \longrightarrow \mathcal{F} \longrightarrow 0 \]

    of $\mathcal{O}$-modules with $I$ and $J$ finite sets.


Comments (2)

Comment #1151 by Olaf Schnürer on

In (6) and (7) the map to should be an epimorphism.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03DE. Beware of the difference between the letter 'O' and the digit '0'.