Lemma 18.26.3. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{F}, \mathcal{G} be sheaves of \mathcal{O}-modules.
If \mathcal{F}, \mathcal{G} are locally free, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
If \mathcal{F}, \mathcal{G} are finite locally free, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
If \mathcal{F}, \mathcal{G} are locally generated by sections, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
If \mathcal{F}, \mathcal{G} are of finite type, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
If \mathcal{F}, \mathcal{G} are quasi-coherent, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
If \mathcal{F}, \mathcal{G} are of finite presentation, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
If \mathcal{F} is of finite presentation and \mathcal{G} is coherent, then \mathcal{F} \otimes _\mathcal {O} \mathcal{G} is coherent.
If \mathcal{F}, \mathcal{G} are coherent, so is \mathcal{F} \otimes _\mathcal {O} \mathcal{G}.
Comments (0)