Lemma 18.26.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}$, $\mathcal{G}$ be sheaves of $\mathcal{O}$-modules.
If $\mathcal{F}$, $\mathcal{G}$ are locally free, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
If $\mathcal{F}$, $\mathcal{G}$ are finite locally free, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
If $\mathcal{F}$, $\mathcal{G}$ are locally generated by sections, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
If $\mathcal{F}$, $\mathcal{G}$ are of finite type, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
If $\mathcal{F}$, $\mathcal{G}$ are quasi-coherent, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
If $\mathcal{F}$, $\mathcal{G}$ are of finite presentation, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
If $\mathcal{F}$ is of finite presentation and $\mathcal{G}$ is coherent, then $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$ is coherent.
If $\mathcal{F}$, $\mathcal{G}$ are coherent, so is $\mathcal{F} \otimes _\mathcal {O} \mathcal{G}$.
Comments (0)