Definition 39.14.1. Let $S$ be a scheme, let $(U, R, s, t, c)$ be a groupoid scheme over $S$. A quasi-coherent module on $(U, R, s, t, c)$ is a pair $(\mathcal{F}, \alpha )$, where $\mathcal{F}$ is a quasi-coherent $\mathcal{O}_ U$-module, and $\alpha$ is a $\mathcal{O}_ R$-module map

$\alpha : t^*\mathcal{F} \longrightarrow s^*\mathcal{F}$

such that

1. the diagram

$\xymatrix{ & \text{pr}_1^*t^*\mathcal{F} \ar[r]_-{\text{pr}_1^*\alpha } & \text{pr}_1^*s^*\mathcal{F} \ar@{=}[rd] & \\ \text{pr}_0^*s^*\mathcal{F} \ar@{=}[ru] & & & c^*s^*\mathcal{F} \\ & \text{pr}_0^*t^*\mathcal{F} \ar[lu]^{\text{pr}_0^*\alpha } \ar@{=}[r] & c^*t^*\mathcal{F} \ar[ru]_{c^*\alpha } }$

is a commutative in the category of $\mathcal{O}_{R \times _{s, U, t} R}$-modules, and

2. the pullback

$e^*\alpha : \mathcal{F} \longrightarrow \mathcal{F}$

is the identity map.

Compare with the commutative diagrams of Lemma 39.13.4.

There are also:

• 2 comment(s) on Section 39.14: Quasi-coherent sheaves on groupoids

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).