Definition 64.3.4. Let $k$ be a finite field with $q = p^ f$ elements. Let $X$ be a scheme over $k$. The geometric frobenius of $X$ is the morphism $\pi _ X : X \to X$ over $\mathop{\mathrm{Spec}}(k)$ which equals $F_ X^ f$.
Definition 64.3.4. Let $k$ be a finite field with $q = p^ f$ elements. Let $X$ be a scheme over $k$. The geometric frobenius of $X$ is the morphism $\pi _ X : X \to X$ over $\mathop{\mathrm{Spec}}(k)$ which equals $F_ X^ f$.
Comments (0)
There are also: