The Stacks project

63.7 Filtered derived category

It turns out we have to do it all again and build the filtered derived category also.

Definition 63.7.1. Let $\mathcal{A}$ be an abelian category.

  1. Let $\text{Fil}(\mathcal{A})$ be the category of filtered objects $(A, F)$ of $\mathcal{A}$, where $F$ is a filtration of the form

    \[ A \supset \ldots \supset F^ n A \supset F^{n+1}A \supset \ldots \supset 0. \]

    This is an additive category.

  2. We denote $\text{Fil}^ f(\mathcal{A})$ the full subcategory of $\text{Fil}(\mathcal{A})$ whose objects $(A, F)$ have finite filtration. This is also an additive category.

  3. An object $I \in \text{Fil}^ f(\mathcal{A})$ is called filtered injective (respectively projective) provided that $\text{gr}^ p(I) = \text{gr}_ F^ p(I) = F^ pI/F^{p+1}I$ is injective (resp. projective) in $\mathcal{A}$ for all $p$.

  4. The category of complexes $\text{Comp}(\text{Fil}^ f(\mathcal{A})) \supset \text{Comp}^+(\text{Fil}^ f(\mathcal{A}))$ and its homotopy category $K(\text{Fil}^ f(\mathcal{A})) \supset K^+(\text{Fil}^ f(\mathcal A))$ are defined as before.

  5. A morphism $\alpha : K^\bullet \to L^\bullet $ of complexes in $\text{Comp}(\text{Fil}^ f(\mathcal{A}))$ is called a filtered quasi-isomorphism provided that

    \[ \text{gr}^ p(\alpha ): \text{gr}^ p(K^\bullet ) \to \text{gr}^ p(L^\bullet ) \]

    is a quasi-isomorphism for all $p \in \mathbf{Z}$.

  6. We define $DF(\mathcal{A})$ (resp. $DF^+(\mathcal{A})$) by inverting the filtered quasi-isomorphisms in $K(\text{Fil}^ f(\mathcal{A}))$ (resp. $K^+(\text{Fil}^ f(\mathcal{A}))$).

Lemma 63.7.2. If $\mathcal{A}$ has enough injectives, then $DF^+(\mathcal{A}) \cong K^+(\mathcal{I})$, where $\mathcal{I}$ is the full additive subcategory of $\text{Fil}^ f(\mathcal{A})$ consisting of filtered injective objects. Similarly, if $\mathcal{A}$ has enough projectives, then $DF^-(\mathcal{A}) \cong K^+(\mathcal{P})$, where $\mathcal P$ is the full additive subcategory of $\text{Fil}^ f(\mathcal{A})$ consisting of filtered projective objects.

Proof. Omitted. $\square$


Comments (2)

Comment #5000 by Lenny Taelman on

I presume this was added before 05RX (from the preliminaries part, chapter derived categories), and is now obsolete?

Comment #5001 by on

Yes. I should probably move this into the obsolete chapter. But this whole chapter needs to be improved drastically. Also, I think we can improve on the exposition of Section 13.13.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03T9. Beware of the difference between the letter 'O' and the digit '0'.