## 63.9 Application of filtered complexes

Let $\mathcal{A}$ be an abelian category with enough injectives, and $0 \to L \to M \to N \to 0$ a short exact sequence in $\mathcal{A}$. Consider $\widetilde M \in \text{Fil}^ f(\mathcal{A})$ to be $M$ along with the filtration defined by

By definition, we have

and $\text{gr}^ n(\widetilde M) = 0$ for all other $n \neq 0, 1$. Let $T: \mathcal{A} \to \mathcal{B}$ be a left exact functor. Assume that $\mathcal{A}$ has enough injectives. Then $RT(\widetilde M) \in DF^+(\mathcal{B})$ is a filtered complex with

and $\text{forget filt}(RT(\widetilde M))\stackrel{\text{qis}}{ = } RT(M)$. The spectral sequence applied to $RT(\widetilde M)$ gives

Unwinding the spectral sequence gives us the long exact sequence

This will be used as follows. Let $X/k$ be a scheme of finite type. Let $\mathcal{F}$ be a flat constructible $\mathbf{Z}/\ell ^ n \mathbf{Z}$-module. Then we want to show that the trace

is additive on short exact sequences. To see this, it will not be enough to work with $R\Gamma _ c(X_{\bar k}, -) \in D^+(\mathbf{Z}/\ell ^ n \mathbf{Z})$, but we will have to use the filtered derived category.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)