Processing math: 100%

The Stacks project

Proposition 64.10.2. Let K\in D_{perf}(\Lambda ) and f\in \text{End}_{D(\Lambda )}(K). Then the trace \text{Tr}(f)\in \Lambda ^\natural is well defined.

Proof. We will use Derived Categories, Lemma 13.19.8 without further mention in this proof. Let P^\bullet be a bounded complex of finite projective \Lambda -modules and let \alpha : P^\bullet \to K be an isomorphism in D(\Lambda ). Then \alpha ^{-1}\circ f\circ \alpha corresponds to a morphism of complexes f^\bullet : P^\bullet \to P^\bullet well defined up to homotopy. Set

\text{Tr}(f) = \sum _ i (-1)^ i \text{Tr}(f^ i : P^ i \to P^ i) \in \Lambda ^\natural .

Given P^\bullet and \alpha , this is independent of the choice of f^\bullet . Namely, any other choice is of the form \tilde{f}^\bullet = f^\bullet + dh +hd for some h^ i : P^ i \to P^{i-1}(i\in \mathbf{Z}). But

\begin{eqnarray*} \text{Tr}(dh) & = & \sum _ i (-1)^ i \text{Tr}(P^ i\xrightarrow {dh} P^ i) \\ & = & \sum _ i (-1)^ i \text{Tr}(P^{i-1}\xrightarrow {hd} P^{i-1}) \\ & = & -\sum _ i (-1)^{i-1}\text{Tr}(P^{i-1}\xrightarrow {hd} P^{i-1}) \\ & = & - \text{Tr}(hd) \end{eqnarray*}

and so \sum _ i (-1)^ i \text{Tr} ((dh+hd)|_{P^ i})=0. Furthermore, this is independent of the choice of (P^\bullet , \alpha ): suppose (Q^\bullet , \beta ) is another choice. The compositions

Q^\bullet \xrightarrow {\beta } K \xrightarrow {\alpha ^{-1}} P^\bullet \quad \text{and}\quad P^\bullet \xrightarrow {\alpha } K \xrightarrow {\beta ^{-1}} Q^\bullet

are representable by morphisms of complexes \gamma _1^\bullet and \gamma _2^\bullet respectively, such that \gamma _1^\bullet \circ \gamma _2^\bullet is homotopic to the identity. Thus, the morphism of complexes \gamma _2^\bullet \circ f^\bullet \circ \gamma _1^\bullet : Q^\bullet \to Q^\bullet represents the morphism \beta ^{-1}\circ f\circ \beta in D(\Lambda ). Now

\begin{eqnarray*} \text{Tr}(\gamma _2^\bullet \circ f^\bullet \circ \gamma _1^\bullet |_{Q^\bullet }) & = & \text{Tr}(\gamma _1^\bullet \circ \gamma _2^\bullet \circ f^\bullet |_{P^\bullet })\\ & = & \text{Tr}(f^\bullet |_{P^\bullet }) \end{eqnarray*}

by the fact that \gamma _1^\bullet \circ \gamma _2^\bullet is homotopic to the identity and the independence of the choice of f^\bullet we saw above. \square


Comments (2)

Comment #164 by on

There are two missing references here, one indicated by "(insert reference here)" and the other by "???". I am not familiar with the matter, so I have no clue as to where they should point.


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.