Proof of Lemma 64.29.1.
Let Y\to ^{\varphi }X be the finite étale Galois covering corresponding to \mathop{\mathrm{Ker}}(\rho ) \subset \pi _1(X, \overline\eta ). So
\text{Aut}(Y/X)=Ind(\rho )
is Galois group. Then \varphi ^*\mathcal{F}_\rho =\underline M_ Y and
\varphi _*\varphi ^*\mathcal{F}_\rho \to \mathcal{F}_\rho
which gives
\begin{align*} & H_ c^2(X_{\overline{k}}, \varphi _*\varphi ^*\mathcal{F}_\rho ) \to H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )\\ & =H_ c^2(Y_{\overline{k}}, \varphi ^*\mathcal{F}_\rho )\\ & =H_ c^2(Y_{\overline{k}}, \underline M) = \oplus _{\text{irred. comp. of } \atop Y_{\overline{k}}}M \end{align*}
\mathop{\mathrm{Im}}(\rho ) \to H_ c^2(Y_{\overline{k}}, \underline M) = \oplus _{\text{irred. comp. of } \atop Y_{\overline{k}}} M \to _{\mathop{\mathrm{Im}}(\rho ) \text{equivalent}} H_ c^2(X_{\overline{k}}, \mathcal{F}_{\rho }) \to ^{\text{trivial } \mathop{\mathrm{Im}}(\rho ) \atop \text{action}}
irreducible curve C/\overline{k}, H_ c^2(C, \underline M)=M.
Since
{\text{set of irreducible } \atop \text{components of }Y_ k} = \frac{Im(\rho )}{Im(\rho |_{\pi _1(X_{\overline{k}}, \overline\eta )})}
We conclude that H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho ) is a quotient of M_{\pi _1(X_{\overline{k}}, \overline\eta )}. On the other hand, there is a surjection
\mathcal{F}_\rho \to \mathcal{F}'' = {\text{ sheaf on } X\text{ associated to } \atop (M)_{\pi _1(X_{\overline{k}}, \overline\eta )}\leftarrow \pi _1(X, \overline\eta )}
H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )\to M_{\pi _1(X_{\overline{k}}, \overline\eta )}
The twist in Galois action comes from the fact that H_ c^2(X_{\overline{k}}, \mu _ n)=^{\text{can}} \mathbf{Z}/n\mathbf{Z}.
\square
Comments (0)