Proposition 63.29.3. Let $X/k$ as before but $X_{\overline{k}}\neq \mathbf{P}^1_{\overline{k}}$ The functors $(M, \rho )\mapsto H_ c^{2-i}(X_{\overline{k}}, \mathcal{F}_\rho )$ are the left derived functor of $(M, \rho )\mapsto H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )$ so

$H_ c^{2-i}(X_{\overline{k}}, \mathcal{F}_\rho ) = H_ i(\pi _1(X_{\overline{k}}, \overline\eta ), M)(-1)$

Moreover, there is a derived version, namely

$R\Gamma _ c(X_{\overline{k}}, \mathcal{F}_\rho ) = LH_0(\pi _1(X_{\overline{k}}, \overline\eta ), M(-1)) = M(-1) \otimes _{\Lambda [[\pi _1(X_{\overline{k}}, \overline\eta )]]}^\mathbf {L} \Lambda$

in $D(\Lambda [[\widehat{\mathbf{Z}}]])$. Similarly, the functors $(M, \rho )\mapsto H^ i(X_{\overline{k}}, \mathcal{F}_\rho )$ are the right derived functor of $(M, \rho )\mapsto M^{\pi _1(X_{\overline{k}}, \overline\eta )}$ so

$H^ i(X_{\overline{k}}, \mathcal{F}_\rho ) = H^ i(\pi _1(X_{\overline{k}}, \overline\eta ), M)$

Moreover, in this case there is a derived version too.

Proof. (Idea) Show both sides are universal $\delta$-functors. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).