Definition 64.31.1. An unramified cusp form on $\text{GL}_2(\mathbf{A})$ with values in $\Lambda $1 is a function
such that
$f(x\gamma ) = f(x)$ for all $x\in \text{GL}_2(\mathbf{A})$ and all $\gamma \in \text{GL}_2(K)$
$f(ux) = f(x)$ for all $x\in \text{GL}_2(\mathbf{A})$ and all $u\in \text{GL}_2(O)$
for all $x\in \text{GL}_2(\mathbf{A})$,
\[ \int _{\mathbf{A} \mod K} f \left(x \left( \begin{matrix} 1 & z \\ 0 & 1 \end{matrix} \right) \right) dz = 0 \]see [Section 4.1, dJ-conjecture] for an explanation of how to make sense out of this for a general ring $\Lambda $ in which $p$ is invertible.
Comments (0)
There are also: