History of tag 03YQ
Go back to the tag's page.
type |
time |
link |
changed the proof
|
2020-06-11 |
3e2fcb7 |
Fix reverse composition
Thans to Elyes Boughattas
https://stacks.math.columbia.edu/tag/026N#comment-4981
|
changed the proof
|
2011-08-13 |
a2054b4 |
LaTeX: get rid of useless brackets
|
changed the statement and the proof
|
2011-08-11 |
f496b59 |
LaTeX: \Sch
Introduced a new macro
\def\Sch{\textit{Sch}}
and replaced all the occurences of \textit{Sch} with \Sch.
|
changed the proof
|
2010-10-09 |
97a5c76 |
Begin translating etale to \'etale or \acute{e}tale (in Math mode).
|
changed the statement and the proof
|
2010-01-20 |
0436365 |
Algebraic stacks: Deligne-Mumford with trivial inertia is a space
To prove this for a general algebraic stack we will first prove
a characterization of a DM stack as an algebraic stack whose
inertia is formally unramified, or equivalently diagonal is
formally unramified. Before we do this it makes sense to change
the notion of unramified as suggested by David Rydh (see
documentation/todo-list).
We also added the proof of the statement that the property of
being an algebraic stack is invariant under equivalences.
|
changed the statement
|
2010-01-04 |
89c4b3d |
Algebraic stacks: More worrying over diagrams
Some more comments on how to go between sheaves and associated
stacks, etc.
|
changed the statement and the proof
|
2010-01-04 |
75eabfa |
Algebraic stacks: Elaborate on example.
Also introduce a method for replacing a ``big'' stack by a small
one.
|
assigned tag 03YQ
|
2010-01-03 |
92b033f
|
Tags: added new tags
|
created statement with label lemma-equivalent in algebraic.tex
|
2010-01-01 |
4a6cbc2 |
Algebraic Stacks: Making the definition work.
This is a rather large set of changes. It turns out that we need
to repeat some of the work done in the setting of schemes in the
setting of algebraic spaces. We can do this as we go along, but
we need to have the framework in place with some example
sections. Hence added to the project are a chapter on topologies
on algebraic spaces and a chapter on descent and algebraic
spaces. We further need to add much more material to the section
on morphisms of algebraic spaces, since right now we do not even
cover the notion of a smooth morphism of algebraic spaces.
Of course most of this is a simple matter of pointing out the
relevant results on schemes. Still...
|