Lemma 8.8.2. Let \mathcal{C} be a site. Let p : \mathcal{S} \to \mathcal{C} be a fibred category over \mathcal{C}. Let p' : \mathcal{S}' \to \mathcal{C} and G : \mathcal{S} \to \mathcal{S}' the stack and 1-morphism constructed in Lemma 8.8.1. This construction has the following universal property: Given a stack q : \mathcal{X} \to \mathcal{C} and a 1-morphism F : \mathcal{S} \to \mathcal{X} of fibred categories over \mathcal{C} there exists a 1-morphism H : \mathcal{S}' \to \mathcal{X} such that the diagram
\xymatrix{ \mathcal{S} \ar[rr]_ F \ar[rd]_ G & & \mathcal{X} \\ & \mathcal{S}' \ar[ru]_ H }
is 2-commutative.
Proof.
Omitted. Hint: Suppose that x' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}'_ U). By the result of Lemma 8.8.1 there exists a covering \{ U_ i \to U\} _{i \in I} such that x'|_{U_ i} = G(x_ i) for some x_ i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_{U_ i}). Moreover, there exist coverings \{ U_{ijk} \to U_ i \times _ U U_ j\} and isomorphisms \alpha _{ijk} : x_ i|_{U_{ijk}} \to x_ j|_{U_{ijk}} with G(\alpha _{ijk}) = \text{id}_{x'|_{U_{ijk}}}. Set y_ i = F(x_ i). Then you can check that
F(\alpha _{ijk}) : y_ i|_{U_{ijk}} \to y_ j|_{U_{ijk}}
agree on overlaps and therefore (as \mathcal{X} is a stack) define a morphism \beta _{ij} : y_ i|_{U_ i \times _ U U_ j} \to y_ j|_{U_ i \times _ U U_ j}. Next, you check that the \beta _{ij} define a descent datum. Since \mathcal{X} is a stack these descent data are effective and we find an object y of \mathcal{X}_ U agreeing with G(x_ i) over U_ i. The hint is to set H(x') = y.
\square
Comments (2)
Comment #5954 by Dario Weißmann on
Comment #6138 by Johan on
There are also: