Definition 18.16.1. With $u : \mathcal{C} \to \mathcal{D}$ satisfying (a), (b) above. For $\mathcal{F} \in \textit{PAb}(\mathcal{C})$ we define $g_{p!}\mathcal{F}$ as the presheaf
\[ V \longmapsto \mathop{\mathrm{colim}}\nolimits _{V \to u(U)} \mathcal{F}(U) \]
with colimits over $(\mathcal{I}_ V^ u)^{opp}$ taken in $\textit{Ab}$. For $\mathcal{F} \in \textit{PAb}(\mathcal{C})$ we set $g_!\mathcal{F} = (g_{p!}\mathcal{F})^\# $.
Comments (0)
There are also: