Lemma 18.20.1. Let (f, f^\sharp ) : (\mathcal{C}, \mathcal{O}) \longrightarrow (\mathcal{D}, \mathcal{O}') be a morphism of ringed sites where f is given by the continuous functor u : \mathcal{D} \to \mathcal{C}. Let V be an object of \mathcal{D} and set U = u(V). Then there is a canonical map of sheaves of rings (f')^\sharp such that the diagram of Sites, Lemma 7.28.1 is turned into a commutative diagram of ringed topoi
\xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U), \mathcal{O}_ U) \ar[rr]_{(j_ U, j_ U^\sharp )} \ar[d]_{(f', (f')^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \ar[d]^{(f, f^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V), \mathcal{O}'_ V) \ar[rr]^{(j_ V, j_ V^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}'). }
Moreover, in this situation we have f'_*j_ U^{-1} = j_ V^{-1}f_* and f'_*j_ U^* = j_ V^*f_*.
Proof.
Just take (f')^\sharp to be
(f')^{-1}\mathcal{O}'_ V = (f')^{-1}j_ V^{-1}\mathcal{O}' = j_ U^{-1}f^{-1}\mathcal{O}' \xrightarrow {j_ U^{-1}f^\sharp } j_ U^{-1}\mathcal{O} = \mathcal{O}_ U
and everything else follows from Sites, Lemma 7.28.1. (Note that j^{-1} = j^* on sheaves of modules if j is a localization morphism, hence the first equality of functors implies the second.)
\square
Comments (0)