Lemma 18.21.3. With (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) and \mathcal{F} \in \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) as in Lemma 18.21.1. If \mathcal{F} = h_ U^\# for some object U of \mathcal{C} then via the identification \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# of Sites, Lemma 7.25.4 we have
canonically \mathcal{O}_ U = \mathcal{O}_\mathcal {F}, and
with these identifications we have (j_\mathcal {F}, j_\mathcal {F}^\sharp ) = (j_ U, j_ U^\sharp ).
Comments (0)