Lemma 40.9.2. Let S be a scheme. Let (U, R, s, t, c) be a groupoid scheme over S. Let g : U' \to U be a morphism of schemes. Let (U', R', s', t', c') be the restriction of (U, R, s, t, c) via g, and let h = s \circ \text{pr}_1 : U' \times _{g, U, t} R \to U. If \mathcal{P} is a property of morphisms of schemes such that
h has property \mathcal{P}, and
\mathcal{P} is preserved under base change,
then s', t' have property \mathcal{P}.
Comments (0)