The Stacks project

110.5.4 Quotient stacks

Quotient stacks1 form a very important subclass of Artin stacks which include almost all moduli stacks studied by algebraic geometers. The geometry of a quotient stack $[X/G]$ is the $G$-equivariant geometry of $X$. It is often easier to show properties are true for quotient stacks and some results are only known to be true for quotient stacks. The following papers address: When is an algebraic stack a global quotient stack? Is an algebraic stack “locally” a quotient stack?

  • Laumon, Moret-Bailly: [Chapter 6, LM-B]

    Chapter 6 contains several facts about the local and global structure of algebraic stacks. It is proved that an algebraic stack $\mathcal{X}$ over $S$ is a quotient stack $[Y/G]$ with $Y$ an algebraic space (resp. scheme, resp. affine scheme) and $G$ a finite group if and only if there exists an algebraic space (resp. scheme, resp. affine scheme) $Y'$ and an finite étale morphism $Y' \to \mathcal{X}$. It is shown that any Deligne-Mumford stack over $S$ and $x : \mathop{\mathrm{Spec}}(K) \to \mathcal{X}$ admits an representable, étale and separated morphism $\phi : [X/G] \to \mathcal{X}$ where $G$ is a finite group acting on an affine scheme over $S$ such that $\mathop{\mathrm{Spec}}(K) = [X/G] \times _\mathcal {X} \mathop{\mathrm{Spec}}(K)$. The existence of presentations with geometrically connected fibers is also discussed in detail.
  • Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks [ehkv]

    First, they establish some fundamental (although not very difficult) facts concerning when a given algebraic stack (always assumed finite type over a Noetherian scheme in this paper) is a quotient stack. For an algebraic stack $\mathcal{X}$ : $\mathcal{X}$ is a quotient stack if and only if there exists a vector bundle $V \to \mathcal{X}$ such that for every geometric point, the stabilizer acts faithfully on the fiber if and only if there exists a vector bundle $V \to \mathcal{X}$ and a locally closed substack $V^0 \subset V$ such that $V^0$ is representable and surjects onto $\mathcal{X}$. They establish that an algebraic stack is a quotient stack if there exists finite flat cover by an algebraic space. Any smooth Deligne-Mumford stack with generically trivial stabilizer is a quotient stack. They show that a $\mathbf{G}_ m$-gerbe over a Noetherian scheme $X$ corresponding to $\beta \in H^2(X, \mathbf{G}_ m)$ is a quotient stack if and only if $\beta $ is in the image of the Brauer map $\text{Br}(X) \to \text{Br}'(X)$. They use this to produce a non-separated Deligne-Mumford stack that is not a quotient stack.
  • Totaro: The resolution property for schemes and stacks [totaro_resolution]

    A stack has the resolution property if every coherent sheaf is the quotient of a vector bundle. The first main theorem is that if $\mathcal{X}$ is a normal Noetherian algebraic stack with affine stabilizer groups at closed points, then the following are equivalent: (1) $\mathcal{X}$ has the resolution property and (2) $\mathcal{X} = [Y/\text{GL}_ n]$ with $Y$ quasi-affine. In the case $\mathcal{X}$ is finite type over a field, then (1) and (2) are equivalent to: (3) $\mathcal{X} = [\mathop{\mathrm{Spec}}(A)/G]$ with $G$ an affine group scheme finite type over $k$. The implication that quotient stacks have the resolution property was proven by Thomason. The second main theorem is that if $\mathcal{X}$ is a smooth Deligne-Mumford stack over a field which has a finite and generically trivial stabilizer group $I_\mathcal {X} \to \mathcal{X}$ and whose coarse moduli space is a scheme with affine diagonal, then $\mathcal{X}$ has the resolution property. Another cool result states that if $\mathcal{X}$ is a Noetherian algebraic stack satisfying the resolution property, then $\mathcal{X}$ has affine diagonal if and only if the closed points have affine stabilizer.
  • Kresch: On the Geometry of Deligne-Mumford Stacks [kresch_geometry]

    This article summarizes general structure results of Deligne-Mumford stacks (of finite type over a field) and contains some interesting results concerning quotient stacks. It is shown that any smooth, separated, generically tame Deligne-Mumford stack with quasi-projective coarse moduli space is a quotient stack $[Y/G]$ with $Y$ quasi-projective and $G$ an algebraic group. If $\mathcal{X}$ is a Deligne-Mumford stack whose coarse moduli space is a scheme, then $\mathcal{X}$ is Zariski-locally a quotient stack if and only if it admits a Zariski-open covering by stack quotients of schemes by finite groups. If $\mathcal{X}$ is a Deligne-Mumford stack proper over a field of characteristic 0 with coarse moduli space $Y$, then: $Y$ is projective and $\mathcal{X}$ is a quotient stack if and only if $Y$ is projective and $\mathcal{X}$ possesses a generating sheaf if and only if $\mathcal{X}$ admits a closed embedding into a smooth proper DM stack with projective coarse moduli space. This motivates a definition that a Deligne-Mumford stack is projective if there exists a closed embedding into a smooth, proper Deligne-Mumford stack with projective coarse moduli space.
  • Kresch, Vistoli On coverings of Deligne-Mumford stacks and surjectivity of the Brauer map [kresch-vistoli]

    It is shown that in characteristic 0 and for a fixed $n$, the following two statements are equivalent: (1) every smooth Deligne-Mumford stack of dimension $n$ is a quotient stack and (2) the Azumaya Brauer group coincides with the cohomological Brauer group for smooth schemes of dimension $n$.
  • Kresch: Cycle Groups for Artin Stacks [kresch_cycle]

    It is shown that a reduced Artin stack finite type over a field with affine stabilizer groups admits a stratification by quotient stacks.
  • Abramovich-Vistoli: Compactifying the space of stable maps [abramovich-vistoli]

    Lemma 2.2.3 establishes that for any separated Deligne-Mumford stack is étale-locally on the coarse moduli space a quotient stack $[U/G]$ where $U$ affine and $G$ a finite group. [Theorem 2.12, olsson_homstacks] shows in this argument $G$ is even the stabilizer group.
  • Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [tame]

    This paper shows that a tame Artin stack is étale locally on the coarse moduli space a quotient stack of an affine by the stabilizer group.
  • Alper: On the local quotient structure of Artin stacks [alper_quotient]

    It is conjectured that for an Artin stack $\mathcal{X}$ and a closed point $x \in \mathcal{X}$ with linearly reductive stabilizer, then there is an étale morphism $[V/G_ x] \to \mathcal{X}$ with $V$ an algebraic space. Some evidence for this conjecture is given. A simple deformation theory argument (based on ideas in [tame]) shows that it is true formally locally. A stack-theoretic proof of Luna's étale slice theorem is presented proving that for stacks $\mathcal{X} = [\mathop{\mathrm{Spec}}(A)/G]$ with $G$ linearly reductive, then étale locally on the GIT quotient $\mathop{\mathrm{Spec}}(A^ G)$, $\mathcal{X}$ is a quotient stack by the stabilizer.
[1] In the literature, quotient stack often means a stack of the form $[X/G]$ with $X$ an algebraic space and $G$ a subgroup scheme of $\text{GL}_ n$ rather than an arbitrary flat group scheme.

Comments (0)

There are also:

  • 4 comment(s) on Section 110.5: Papers in the literature

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04UZ. Beware of the difference between the letter 'O' and the digit '0'.