Lemma 3.7.1. Suppose that $T = \mathop{\mathrm{colim}}\nolimits _{\alpha < \beta } T_\alpha $ is a colimit of sets indexed by ordinals less than a given ordinal $\beta $. Suppose that $\varphi : S \to T$ is a map of sets. Then $\varphi $ lifts to a map into $T_\alpha $ for some $\alpha < \beta $ provided that $\beta $ is not a limit of ordinals indexed by $S$, in other words, if $\beta $ is an ordinal with $\text{cf}(\beta ) > |S|$.

**Proof.**
For each element $s \in S$ pick a $\alpha _ s < \beta $ and an element $t_ s \in T_{\alpha _ s}$ which maps to $\varphi (s)$ in $T$. By assumption $\alpha = \sup _{s \in S} \alpha _ s$ is strictly smaller than $\beta $. Hence the map $\varphi _\alpha : S \to T_\alpha $ which assigns to $s$ the image of $t_ s$ in $T_\alpha $ is a solution.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #143 by Fred Rohrer on

Comment #148 by Johan on

There are also: