Lemma 18.14.4. Let $\mathcal{C}$ be a site. If $\{ p_ i\} _{i \in I}$ is a conservative family of points, then we may check exactness of a sequence of abelian sheaves on the stalks at the points $p_ i$, $i \in I$. If $\mathcal{C}$ has enough points, then exactness of a sequence of abelian sheaves may be checked on stalks.
Proof. This is immediate from Sites, Lemma 7.38.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)