Lemma 8.11.2. Let $\mathcal{C}$ be a site. Let $\mathcal{S}_1$, $\mathcal{S}_2$ be categories over $\mathcal{C}$. Suppose that $\mathcal{S}_1$ and $\mathcal{S}_2$ are equivalent as categories over $\mathcal{C}$. Then $\mathcal{S}_1$ is a gerbe over $\mathcal{C}$ if and only if $\mathcal{S}_2$ is a gerbe over $\mathcal{C}$.

Proof. Assume $\mathcal{S}_1$ is a gerbe over $\mathcal{C}$. By Lemma 8.5.4 we see $\mathcal{S}_2$ is a stack in groupoids over $\mathcal{C}$. Let $F : \mathcal{S}_1 \to \mathcal{S}_2$, $G : \mathcal{S}_2 \to \mathcal{S}_1$ be equivalences of categories over $\mathcal{C}$. Given $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ we see that there exists a covering $\{ U_ i \to U\}$ such that $(\mathcal{S}_1)_{U_ i}$ is nonempty. Applying $F$ we see that $(\mathcal{S}_2)_{U_ i}$ is nonempty. Given $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and $x, y \in \mathop{\mathrm{Ob}}\nolimits ((\mathcal{S}_2)_ U)$ there exists a covering $\{ U_ i \to U\}$ in $\mathcal{C}$ such that $G(x)|_{U_ i} \cong G(y)|_{U_ i}$ in $(\mathcal{S}_1)_{U_ i}$. By Categories, Lemma 4.35.8 this implies $x|_{U_ i} \cong y|_{U_ i}$ in $(\mathcal{S}_2)_{U_ i}$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).