Lemma 40.6.5. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid over $S$. Let $G \to U$ be its stabilizer group scheme. Let $\tau \in \{ fppf, \linebreak {\acute{e}tale}, \linebreak smooth, \linebreak syntomic\}$. Let $\mathcal{P}$ be a property of morphisms which is $\tau$-local on the target. Assume $\{ s : R \to U\}$ and $\{ t : R \to U\}$ are coverings for the $\tau$-topology. Let $W \subset U$ be the maximal open subscheme such that $G_ W \to W$ has property $\mathcal{P}$. Then $W$ is $R$-invariant (see Groupoids, Definition 39.19.1).

Proof. The existence and properties of the open $W \subset U$ are described in Descent, Lemma 35.22.3. The morphism

$G \times _{U, t} R \longrightarrow R \times _{s, U} G, \quad (g, r) \longmapsto (r, r^{-1} \circ g \circ r)$

is an isomorphism over $R$ (where $\circ$ denotes composition in the groupoid). Hence $s^{-1}(W) = t^{-1}(W)$ by the properties of $W$ proved in the aforementioned Descent, Lemma 35.22.3. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).