Exercise 111.32.10. Let $X$, $A_ x$, $\mathcal{G}$ be as in Exercise 111.32.9. Let $\mathcal{B}$ be a basis for the topology of $X$, see Topology, Definition 5.5.1. For $U \in \mathcal{B}$ let $A_ U$ be a subgroup $A_ U \subset \mathcal{G}(U) = \prod _{x \in U} A_ x$. Assume that for $U \subset V$ with $U, V \in \mathcal{B}$ the restriction maps $A_ V$ into $A_ U$. For $U \subset X$ open set
Show that $\mathcal{F}$ defines a sheaf of abelian groups on $X$. Show, by an example, that it is usually not the case that $\mathcal{F}(U) = A_ U$ for $U \in \mathcal{B}$.
Comments (0)