The Stacks project

Remark 60.6.4. Let $A \to B$ be a ring map and let $(J, \delta )$ be a divided power structure on $B$. The universal module $\Omega _{B/A, \delta }$ comes with a little bit of extra structure, namely the $B$-submodule $N$ of $\Omega _{B/A, \delta }$ generated by $\text{d}_{B/A, \delta }(J)$. In terms of the isomorphism given in Lemma 60.6.3 this corresponds to the image of $K \cap J(1)$ in $\Omega _{B/A, \delta }$. Consider the $A$-algebra $D = B \oplus \Omega ^1_{B/A, \delta }$ with ideal $\bar J = J \oplus N$ and divided powers $\bar\delta $ as in the proof of the lemma. Then $(D, \bar J, \bar\delta )$ is a divided power ring and the two maps $B \to D$ given by $b \mapsto b$ and $b \mapsto b + \text{d}_{B/A, \delta }(b)$ are homomorphisms of divided power rings over $A$. Moreover, $N$ is the smallest submodule of $\Omega _{B/A, \delta }$ such that this is true.


Comments (0)

There are also:

  • 9 comment(s) on Section 60.6: Module of differentials

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07HU. Beware of the difference between the letter 'O' and the digit '0'.