The Stacks project

Lemma 60.19.2. With notation as in (60.17.0.5) the complex

\[ \Omega _{D(0)} \to \Omega _{D(1)} \to \Omega _{D(2)} \to \ldots \]

is homotopic to zero as a $D(*)$-cosimplicial module.

Proof. We are going to use the principle of Simplicial, Lemma 14.28.4 and more specifically Lemma 60.16.1 which tells us that homotopic maps between (co)simplicial objects are transformed by any functor into homotopic maps. The complex of the lemma is equal to the $p$-adic completion of the base change of the cosimplicial module

\[ M_* = \left( \Omega _{P/A} \to \Omega _{P \otimes _ A P/A} \to \Omega _{P \otimes _ A P \otimes _ A P/A} \to \ldots \right) \]

via the cosimplicial ring map $P\otimes _ A \ldots \otimes _ A P \to D(n)$. This follows from Lemma 60.6.6, see comments following (60.17.0.2). Hence it suffices to show that the cosimplicial module $M_*$ is homotopic to zero (uses base change and $p$-adic completion). We can even assume $A = \mathbf{Z}$ and $P = \mathbf{Z}[\{ x_ i\} _{i \in I}]$ as we can use base change with $\mathbf{Z} \to A$. In this case $P^{\otimes n + 1}$ is the polynomial algebra on the elements

\[ x_ i(e) = 1 \otimes \ldots \otimes x_ i \otimes \ldots \otimes 1 \]

with $x_ i$ in the $e$th slot. The modules of the complex are free on the generators $\text{d}x_ i(e)$. Note that if $f : [n] \to [m]$ is a map then we see that

\[ M_*(f)(\text{d}x_ i(e)) = \text{d}x_ i(f(e)) \]

Hence we see that $M_*$ is a direct sum over $I$ of copies of the module studied in Example 60.19.1 and we win. $\square$


Comments (2)

Comment #8713 by on

terima kasih atas informasinya yang bermanfaat... Di OYEN4D kami adalah perusahaan terbesar yang bergerak di sektor online Gacor, sehingga memudahkan untuk mengakses Maxwin. Karena kami memiliki informasi akurat mengenai RTP terupdate hari ini dan ukuran sebenarnya.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07L9. Beware of the difference between the letter 'O' and the digit '0'.