\Omega ' = B' \otimes _ B \Omega \oplus B'\text{d}z; we write \text{d}(f) = \text{d}_1(f) + \partial _ z(f) \text{d}z with \text{d}_1(f) \in B' \otimes \Omega and \partial _ z(f) \in B' for all f \in B',
\Omega ' = B' \otimes _ B \Omega \oplus B'\text{d}z; we write \text{d}(f) = \text{d}_1(f) + \partial _ z(f) \text{d}z with \text{d}_1(f) \in B' \otimes \Omega and \partial _ z(f) \in B' for all f \in B',
Comments (0)