Lemma 18.33.7. Let $\mathcal{C}$ be a site. Let
be a commutative diagram of sheaves of rings on $\mathcal{C}$. The map $\mathcal{O}_2 \to \mathcal{O}'_2$ composed with the map $\text{d} : \mathcal{O}'_2 \to \Omega _{\mathcal{O}'_2/\mathcal{O}'_1}$ is a $\mathcal{O}_1$-derivation. Hence we obtain a canonical map of $\mathcal{O}_2$-modules $\Omega _{\mathcal{O}_2/\mathcal{O}_1} \to \Omega _{\mathcal{O}'_2/\mathcal{O}'_1}$. It is uniquely characterized by the property that $\text{d}(f)$ mapsto $\text{d}(\varphi (f))$ for any local section $f$ of $\mathcal{O}_2$. In this way $\Omega _{-/-}$ becomes a functor on the category of arrows of sheaves of rings.
Comments (0)