The Stacks project

Lemma 5.26.2. Let $f : X \to Y$ be a continuous map of topological spaces. Assume $f$ is surjective and $f(E) \not= Y$ for all proper closed subsets $E \subset X$. Then for $U \subset X$ open the subset $f(U)$ is contained in the closure of $Y \setminus f(X \setminus U)$.

Proof. Pick $y \in f(U)$ and let $V \subset Y$ be any open neighbourhood of $y$. We will show that $V$ intersects $Y \setminus f(X \setminus U)$. Note that $W = U \cap f^{-1}(V)$ is a nonempty open subset of $X$, hence $f(X \setminus W) \not= Y$. Take $y' \in Y$, $y' \not\in f(X \setminus W)$. It is elementary to show that $y' \in V$ and $y' \in Y \setminus f(X \setminus U)$. $\square$


Comments (0)

There are also:

  • 12 comment(s) on Section 5.26: Extremally disconnected spaces

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08YJ. Beware of the difference between the letter 'O' and the digit '0'.