Lemma 5.25.2. Let $X$ be a Hausdorff, locally quasi-compact space. There exists a map $X \to X^*$ which identifies $X$ as an open subspace of a quasi-compact Hausdorff space $X^*$ such that $X^* \setminus X$ is a singleton (one point compactification). In particular, the map $X \to \beta (X)$ identifies $X$ with an open subspace of $\beta (X)$.

**Proof.**
Set $X^* = X \amalg \{ \infty \} $. We declare a subset $V$ of $X^*$ to be open if either $V \subset X$ is open in $X$, or $\infty \in V$ and $U = V \cap X$ is an open of $X$ such that $X \setminus U$ is quasi-compact. We omit the verification that this defines a topology. It is clear that $X \to X^*$ identifies $X$ with an open subspace of $X$.

Since $X$ is locally quasi-compact, every point $x \in X$ has a quasi-compact neighbourhood $x \in E \subset X$. Then $E$ is closed (Lemma 5.12.4 part (1)) and $V = (X \setminus E) \amalg \{ \infty \} $ is an open neighbourhood of $\infty $ disjoint from the interior of $E$. Thus $X^*$ is Hausdorff.

Let $X^* = \bigcup V_ i$ be an open covering. Then for some $i$, say $i_0$, we have $\infty \in V_{i_0}$. By construction $Z = X^* \setminus V_{i_0}$ is quasi-compact. Hence the covering $Z \subset \bigcup _{i \not= i_0} Z \cap V_ i$ has a finite refinement which implies that the given covering of $X^*$ has a finite refinement. Thus $X^*$ is quasi-compact.

The map $X \to X^*$ factors as $X \to \beta (X) \to X^*$ by the universal property of the Stone-Čech compactification. Let $\varphi : \beta (X) \to X^*$ be this factorization. Then $X \to \varphi ^{-1}(X)$ is a section to $\varphi ^{-1}(X) \to X$ hence has closed image (Lemma 5.3.3). Since the image of $X \to \beta (X)$ is dense we conclude that $X = \varphi ^{-1}(X)$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #6903 by Shota Inoue on

Comment #6982 by Johan on

There are also: