Lemma 18.30.4. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $U$ be a quasi-compact object of $\mathcal{C}$. Then the functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_!\mathcal{O}_ U, -)$ commutes with direct sums.
Proof. This is true because $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_!\mathcal{O}_ U, \mathcal{F}) = \mathcal{F}(U)$ by (18.19.2.1) and because the functor $\mathcal{F} \mapsto \mathcal{F}(U)$ commutes with direct sums by Lemma 18.30.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)