Lemma 18.30.4. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let U be a quasi-compact object of \mathcal{C}. Then the functor \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_!\mathcal{O}_ U, -) commutes with direct sums.
Proof. This is true because \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(j_!\mathcal{O}_ U, \mathcal{F}) = \mathcal{F}(U) by (18.19.2.1) and because the functor \mathcal{F} \mapsto \mathcal{F}(U) commutes with direct sums by Lemma 18.30.3. \square
Comments (0)