The Stacks project

Lemma 18.43.4. Let $\mathcal{C}$ be a site. Let $\Lambda $ be a ring. Let $M$, $N$ be $\Lambda $-modules. Let $\mathcal{F}, \mathcal{G}$ be a locally constant sheaves of $\Lambda $-modules.

  1. If $M$ is of finite presentation, then

    \[ \underline{\mathop{\mathrm{Hom}}\nolimits _\Lambda (M, N)} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\underline{M}, \underline{N}) \]
  2. If $M$ and $N$ are both of finite presentation, then

    \[ \underline{\text{Isom}_\Lambda (M, N)} = \mathit{Isom}_{\underline{\Lambda }}(\underline{M}, \underline{N}) \]
  3. If $\mathcal{F}$ is of finite presentation, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\mathcal{F}, \mathcal{G})$ is a locally constant sheaf of $\Lambda $-modules.

  4. If $\mathcal{F}$ and $\mathcal{G}$ are both of finite presentation, then $\mathit{Isom}_{\underline{\Lambda }}(\mathcal{F}, \mathcal{G})$ is a locally constant sheaf of sets.

Proof. Proof of (1). Set $E = \mathop{\mathrm{Hom}}\nolimits _\Lambda (M, N)$. We want to show the canonical map

\[ \underline{E} \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\underline{M}, \underline{N}) \]

is an isomorphism. The module $M$ has a presentation $\Lambda ^{\oplus s} \to \Lambda ^{\oplus t} \to M \to 0$. Then $E$ sits in an exact sequence

\[ 0 \to E \to \mathop{\mathrm{Hom}}\nolimits _\Lambda (\Lambda ^{\oplus t}, N) \to \mathop{\mathrm{Hom}}\nolimits _\Lambda (\Lambda ^{\oplus s}, N) \]

and we have similarly

\[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\underline{M}, \underline{N}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\underline{\Lambda ^{\oplus t}}, \underline{N}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\underline{\Lambda ^{\oplus s}}, \underline{N}) \]

This reduces the question to the case where $M$ is a finite free module where the result is clear.

Proof of (3). The question is local on $\mathcal{C}$, hence we may assume $\mathcal{F} = \underline{M}$ and $\mathcal{G} = \underline{N}$ for some $\Lambda $-modules $M$ and $N$. By Lemma 18.42.5 the module $M$ is of finite presentation. Thus the result follows from (1).

Parts (2) and (4) follow from parts (1) and (3) and the fact that $\mathit{Isom}$ can be viewed as the subsheaf of sections of $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\mathcal{F}, \mathcal{G})$ which have an inverse in $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\underline{\Lambda }}(\mathcal{G}, \mathcal{F})$. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 093T. Beware of the difference between the letter 'O' and the digit '0'.