Loading web-font TeX/Math/Italic

The Stacks project

Lemma 5.28.7. Let X be a topological space. Suppose X = T_1 \cup \ldots \cup T_ n is written as a union of constructible subsets. There exists a finite stratification X = \coprod X_ i with each X_ i constructible such that each T_ k is a union of strata.

Proof. By definition of constructible subsets, we can write each T_ i as a finite union of U \cap V^ c with U, V \subset X retrocompact open. Hence we may assume that T_ i = U_ i \cap V_ i^ c with U_ i, V_ i \subset X retrocompact open. Let S be the finite set of closed subsets of X consisting of \emptyset , X, U_ i^ c, V_ i^ c and finite intersections of these. If Z \in S, then Z is constructible in X (Lemma 5.15.2). Moreover, Z \cap Z' \in S for all Z, Z' \in S. Define a partial ordering on S by inclusion. For Z \in S set X_ Z = Z \setminus \bigcup _{Z' < Z,\ Z' \in S} Z' to get a stratification X = \coprod _{Z \in S} X_ Z satisfying the properties stated in the lemma. \square


Comments (3)

Comment #6474 by Owen on

It appears that each is moreover locally constant constructible in the statement of the lemma. In the proof, seems to be doing notational double duty as a set of closed subsets of and as indices for such. Perhaps introduce a separate finite index set so that is the set of with , so that in the end the stratification will be indexed by , with .

Comment #6475 by Owen on

*locally closed constructible

Comment #6550 by on

OK, I have fixed up the notation. See changes. The parts of a partition or the strata of a stratification are locally closed by Definitions 5.28.1 and 5.28.3.

There are also:

  • 2 comment(s) on Section 5.28: Partitions and stratifications

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.