The Stacks project

Lemma 5.15.9. Let $Z \subset X$ be a closed subset whose complement is retrocompact open. Let $E \subset Z$. If $E$ is constructible in $Z$, then $E$ is constructible in $X$.

Proof. Suppose that $V \subset Z$ is retrocompact open in $Z$. Consider the open subset $\tilde V = V \cup (X \setminus Z)$ of $X$. Let $W \subset X$ be quasi-compact open. Then

\[ W \cap \tilde V = \left(V \cap W\right) \cup \left((X \setminus Z) \cap W\right). \]

The first part is quasi-compact as $V \cap W = V \cap (Z \cap W)$ and $(Z \cap W)$ is quasi-compact open in $Z$ (Lemma 5.12.3) and $V$ is retrocompact in $Z$. The second part is quasi-compact as $(X \setminus Z)$ is retrocompact in $X$. In this way we see that $\tilde V$ is retrocompact in $X$. Thus if $V_1, V_2 \subset Z$ are retrocompact open, then

\[ V_1 \cap (Z \setminus V_2) = \tilde V_1 \cap (X \setminus \tilde V_2) \]

is constructible in $X$. We conclude since every constructible subset of $Z$ is a finite union of subsets of the form $V_1 \cap (Z \setminus V_2)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09YG. Beware of the difference between the letter 'O' and the digit '0'.