Lemma 5.24.3. Let $\mathcal{I}$ be a cofiltered category. Let $i \mapsto X_ i$ be a diagram of spectral spaces such that for $a : j \to i$ in $\mathcal{I}$ the corresponding map $f_ a : X_ j \to X_ i$ is spectral. Let $X = \mathop{\mathrm{lim}}\nolimits X_ i$ with projections $p_ i : X \to X_ i$. Let $i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and let $E, F \subset X_ i$ be subsets with $E$ closed in the constructible topology and $F$ open in the constructible topology. Then $p_ i^{-1}(E) \subset p_ i^{-1}(F)$ if and only if there is a morphism $a : j \to i$ in $\mathcal{I}$ such that $f_ a^{-1}(E) \subset f_ a^{-1}(F)$.
Proof. Observe that
\[ p_ i^{-1}(E) \setminus p_ i^{-1}(F) = \mathop{\mathrm{lim}}\nolimits _{a : j \to i} f_ a^{-1}(E) \setminus f_ a^{-1}(F) \]
Since $f_ a$ is a spectral map, it is continuous in the constructible topology hence the set $f_ a^{-1}(E) \setminus f_ a^{-1}(F)$ is closed in the constructible topology. Hence Lemma 5.24.2 applies to show that the LHS is nonempty if and only if each of the spaces of the RHS is nonempty. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)