Processing math: 100%

The Stacks project

Lemma 6.29.4. In the situation described above, let i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}) and let U_ i \subset X_ i be a quasi-compact open. Then

\mathop{\mathrm{colim}}\nolimits _{a : j \to i} \mathcal{F}_ j(f_ a^{-1}(U_ i)) = \mathcal{F}(p_ i^{-1}(U_ i))

Proof. Recall that p_ i^{-1}(U_ i) is a quasi-compact open of the spectral space X, see Topology, Lemma 5.24.5. Hence Lemma 6.29.1 applies and we have

\mathcal{F}(p_ i^{-1}(U_ i)) = \mathop{\mathrm{colim}}\nolimits _{a : j \to i} p_ j^{-1}\mathcal{F}_ j(p_ i^{-1}(U_ i)).

A formal argument shows that

\mathop{\mathrm{colim}}\nolimits _{a : j \to i} \mathcal{F}_ j(f_ a^{-1}(U_ i)) = \mathop{\mathrm{colim}}\nolimits _{a : j \to i} \mathop{\mathrm{colim}}\nolimits _{b : k \to j} f_ b^{-1}\mathcal{F}_ j(f_{a \circ b}^{-1}(U_ i))

Thus it suffices to show that

p_ j^{-1}\mathcal{F}_ j(p_ i^{-1}(U_ i)) = \mathop{\mathrm{colim}}\nolimits _{b : k \to j} f_ b^{-1}\mathcal{F}_ j(f_{a \circ b}^{-1}(U_ i))

This is Lemma 6.29.3 applied to \mathcal{F}_ j and the quasi-compact open f_ a^{-1}(U_ i). \square


Comments (0)

There are also:

  • 2 comment(s) on Section 6.29: Limits and colimits of sheaves

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.