Lemma 39.19.3. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. Assume $s$ and $t$ quasi-compact and flat and $U$ quasi-separated. Let $W \subset U$ be quasi-compact open. Then $t(s^{-1}(W))$ is an intersection of a nonempty family of quasi-compact open subsets of $U$.

Proof. Note that $s^{-1}(W)$ is quasi-compact open in $R$. As a continuous map $t$ maps the quasi-compact subset $s^{-1}(W)$ to a quasi-compact subset $t(s^{-1}(W))$. As $t$ is flat and $s^{-1}(W)$ is closed under generalization, so is $t(s^{-1}(W))$, see (Morphisms, Lemma 29.25.9 and Topology, Lemma 5.19.6). Pick a quasi-compact open $W' \subset U$ containing $t(s^{-1}(W))$. By Properties, Lemma 28.2.4 we see that $W'$ is a spectral space (here we use that $U$ is quasi-separated). Then the lemma follows from Topology, Lemma 5.24.7 applied to $t(s^{-1}(W)) \subset W'$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).