Definition 39.21.1. Let $S$ be a scheme. Let $f : (U', R', s', t', c') \to (U, R, s, t, c)$ be a morphism of groupoid schemes over $S$. We say $f$ is cartesian, or that $(U', R', s', t', c')$ is cartesian over $(U, R, s, t, c)$, if the diagram
is a fibre square in the category of schemes. A morphism of groupoid schemes cartesian over $(U, R, s, t, c)$ is a morphism of groupoid schemes compatible with the structure morphisms towards $(U, R, s, t, c)$.
Comments (0)