Lemma 43.16.4. In Lemma 43.16.3 assume that $c = 1$, i.e., $V$ is an effective Cartier divisor. Then
\[ e(X, V \cdot W, Z) = \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/f_1\mathcal{O}_{W, \xi }). \]
Proof. In this case the image of $f_1$ in $\mathcal{O}_{W, \xi }$ is nonzero by properness of intersection, hence a nonzerodivisor divisor. Moreover, $\mathcal{O}_{W, \xi }$ is a Noetherian local domain of dimension $1$. Thus
\[ \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/f_1^ t\mathcal{O}_{W, \xi }) = t \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/f_1\mathcal{O}_{W, \xi }) \]
for all $t \geq 1$, see Algebra, Lemma 10.121.1. This proves the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)