Lemma 43.16.4. In Lemma 43.16.3 assume that c = 1, i.e., V is an effective Cartier divisor. Then
e(X, V \cdot W, Z) = \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/f_1\mathcal{O}_{W, \xi }).
Proof. In this case the image of f_1 in \mathcal{O}_{W, \xi } is nonzero by properness of intersection, hence a nonzerodivisor divisor. Moreover, \mathcal{O}_{W, \xi } is a Noetherian local domain of dimension 1. Thus
\text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/f_1^ t\mathcal{O}_{W, \xi }) = t \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/f_1\mathcal{O}_{W, \xi })
for all t \geq 1, see Algebra, Lemma 10.121.1. This proves the lemma. \square
Comments (0)