Lemma 43.6.2. Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms of varieties. Then $g_* \circ f_* = (g \circ f)_*$ as maps $Z_ k(X) \to Z_ k(Z)$.
Proof. Special case of Chow Homology, Lemma 42.12.2. $\square$
Lemma 43.6.2. Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms of varieties. Then $g_* \circ f_* = (g \circ f)_*$ as maps $Z_ k(X) \to Z_ k(Z)$.
Proof. Special case of Chow Homology, Lemma 42.12.2. $\square$
Comments (0)
There are also: