Lemma 5.30.11. Let $R$ be a topological ring. The category of topological modules over $R$ has limits and limits commute with the forgetful functors to (a) the category of topological spaces and (b) the category of $R$-modules.

**Proof.**
It is enough to prove the existence and commutation for products and equalizers, see Categories, Lemma 4.14.11. Let $M_ i$, $i \in I$ be a collection of topological modules over $R$. Take the usual product $M = \prod M_ i$ with the product topology. Since $M \times M = \prod (M_ i \times M_ i)$ as a topological space (because products commutes with products in any category), we see that addition on $M$ is continuous. Similarly for multiplication $R \times M \to M$. Let $a, b : M \to M'$ be two homomorphisms of topological modules over $R$. Then as the equalizer we can simply take the equalizer of $a$ and $b$ as maps of topological spaces, which is the same thing as the equalizer as maps of modules endowed with the induced topology.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)