Example 5.8.9. Let $X$ be an indiscrete space of cardinality at least $2$. Then $X$ is quasi-sober but not Kolmogorov. Moreover, the family of its singletons is a covering of $X$ by discrete and hence Kolmogorov spaces.
Example 5.8.9. Let $X$ be an indiscrete space of cardinality at least $2$. Then $X$ is quasi-sober but not Kolmogorov. Moreover, the family of its singletons is a covering of $X$ by discrete and hence Kolmogorov spaces.
Comments (0)
There are also: