Example 5.8.12. Let $Z$ be an infinite set and let $z\in Z$. We furnish $Z$ with the topology whose closed sets are $Z$ and the finite subsets of $Z\setminus \{ z\} $. Then $Z$ is sober but its subspace $Z\setminus \{ z\} $ is not quasi-sober.
Example 5.8.12. Let $Z$ be an infinite set and let $z\in Z$. We furnish $Z$ with the topology whose closed sets are $Z$ and the finite subsets of $Z\setminus \{ z\} $. Then $Z$ is sober but its subspace $Z\setminus \{ z\} $ is not quasi-sober.
Comments (2)
Comment #3545 by Laurent Moret-Bailly on
Comment #3677 by Johan on
There are also: