The Stacks project

Example 5.30.2. Let $E$ be a set. We can endow the set of self maps $\text{Map}(E, E)$ with the compact open topology, i.e., the topology such that given $f : E \to E$ a fundamental system of neighbourhoods of $f$ is given by the sets $U_ S(f) = \{ f' : E \to E \mid f'|_ S = f|_ S\} $ where $S \subset E$ is finite. With this topology the action

\[ \text{Map}(E, E) \times E \longrightarrow E,\quad (f, e) \longmapsto f(e) \]

is continuous when $E$ is given the discrete topology. If $X$ is a topological space and $X \times E \to E$ is a continuous map, then the map $X \to \text{Map}(E, E)$ is continuous. In other words, the compact open topology is the coarsest topology such that the “action” map displayed above is continuous. The composition

\[ \text{Map}(E, E) \times \text{Map}(E, E) \to \text{Map}(E, E) \]

is continuous as well (as is easily verified using the description of neighbourhoods above). Finally, if $\text{Aut}(E) \subset \text{Map}(E, E)$ is the subset of invertible maps, then the inverse $i : \text{Aut}(E) \to \text{Aut}(E)$, $f \mapsto f^{-1}$ is continuous too. Namely, say $S \subset E$ is finite, then $i^{-1}(U_ S(f^{-1})) = U_{f^{-1}(S)}(f)$. Hence $\text{Aut}(E)$ is a topological group as in Definition 5.30.1.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BMC. Beware of the difference between the letter 'O' and the digit '0'.