The Stacks project

Exercise 111.12.7. Let $(R, \mathfrak m)$ be a Noetherian local ring. Assume that $R$ is reduced, i.e., $R$ has no nonzero nilpotent elements. Assume moreover that $R$ has two distinct minimal primes $\mathfrak p$ and $\mathfrak q$.

  1. Show that the sequence of $R$-modules

    \[ 0 \to R \to R/\mathfrak p \oplus R/\mathfrak q \to R/\mathfrak p + \mathfrak q \to 0 \]

    is exact (check at all the spots). The maps are $x \mapsto (x \bmod \mathfrak p, x \bmod \mathfrak q)$ and $(y \bmod \mathfrak p, z \bmod \mathfrak q) \mapsto (y - z \bmod \mathfrak p + \mathfrak q)$.

  2. Show that if $\text{depth}(R) \geq 2$, then $\dim (R/\mathfrak p + \mathfrak q) \geq 1$.

  3. Show that if $\text{depth}(R) \geq 2$, then $U = \mathop{\mathrm{Spec}}(R) \setminus \{ \mathfrak m\} $ is a connected topological space.

This proves a very special case of Hartshorne's connectedness theorem which says that the punctured spectrum $U$ of a local Noetherian ring of $\text{depth} \geq 2$ is connected.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CT1. Beware of the difference between the letter 'O' and the digit '0'.