Exercise 111.45.6. In Situation 111.45.1 assume $n = 2$. Let $s_1, s_2, s_3 \in \Gamma (X, \mathcal{O}_ X(2))$ be three quadric equations. Consider the coherent sheaf
\[ \mathcal{F} = \mathop{\mathrm{Coker}}\left(\mathcal{O}_ X(-2)^{\oplus 3} \xrightarrow {s_1, s_2, s_3} \mathcal{O}_ X\right) \]
List the possible Hilbert polynomials of such $\mathcal{F}$. (Try to visualize intersections of quadrics in the projective plane.)
Comments (0)