The Stacks project

Exercise 111.46.7. Choose your favorite algebraically closed field $k$. As best as you can determine all possible $\mathfrak g^ r_ d$ that can exist on some curve of genus $7$. While doing this also try to

  1. determine in which cases the $\mathfrak g^ r_ d$ is base point free, and

  2. determine in which cases the $\mathfrak g^ r_ d$ gives a closed embedding in $\mathbf{P}^ r$.

Do the same thing if you assume your curve is “general” (make up your own notion of general – this may be easier than the question above). Do the same thing if you assume your curve is hyperelliptic. Do the same thing if you assume your curve is trigonal (and not hyperelliptic). Etc.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EGR. Beware of the difference between the letter 'O' and the digit '0'.