The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

18.43 Localizing sheaves of rings

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{S} \subset \mathcal{O}$ be a sub-presheaf of sets such that for all $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ the set $\mathcal{S}(U) \subset \mathcal{O}(U)$ is a multiplicative subset, see Algebra, Definition 10.9.1. In this case we can consider the presheaf of rings

\[ \mathcal{S}^{-1}\mathcal{O} : U \longmapsto \mathcal{S}(U)^{-1}\mathcal{O}(U). \]

The restriction mapping sends the section $f/s$, $f \in \mathcal{O}(U)$, $s \in \mathcal{S}(U)$ to $(f|_ V)/(s|_ V)$ for $V \to U$ in $\mathcal{C}$.

Lemma 18.43.1. In the situation above the map to the sheafification

\[ \mathcal{O} \longrightarrow (\mathcal{S}^{-1}\mathcal{O})^\# \]

is a homomorphism of sheaves of rings with the following universal property: for any homomorphism of sheaves of rings $\mathcal{O} \to \mathcal{A}$ such that each local section of $\mathcal{S}$ maps to an invertible section of $\mathcal{A}$ there exists a unique factorization $(\mathcal{S}^{-1}\mathcal{O})^\# \to \mathcal{A}$.

Proof. Omitted. $\square$

Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{S} \subset \mathcal{O}$ be a sub-presheaf of sets such that for all $U \in \mathcal{C}$ the set $\mathcal{S}(U) \subset \mathcal{O}(U)$ is a multiplicative subset. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. In this case we can consider the presheaf of $\mathcal{S}^{-1}\mathcal{O}$-modules

\[ \mathcal{S}^{-1}\mathcal{F} : U \longmapsto \mathcal{S}(U)^{-1}\mathcal{F}(U). \]

The restriction mapping sends the section $t/s$, $t \in \mathcal{F}(U)$, $s \in \mathcal{S}(U)$ to $(t|_ V)/(s|_ V)$ if $V \to U$ is a morphism of $\mathcal{C}$. Then $\mathcal{S}^{-1}\mathcal{F}$ is a presheaf of $\mathcal{S}^{-1}\mathcal{O}$-modules.

Lemma 18.43.2. In the situation above the map to the sheafification

\[ \mathcal{F} \longrightarrow (\mathcal{S}^{-1}\mathcal{F})^\# \]

has the following universal property: for any homomorphism of $\mathcal{O}$-modules $\mathcal{F} \to \mathcal{G}$ such that each local section of $\mathcal{S}$ acts invertibly on $\mathcal{G}$ there exists a unique factorization $(\mathcal{S}^{-1}\mathcal{F})^\# \to \mathcal{G}$. Moreover we have

\[ (\mathcal{S}^{-1}\mathcal{F})^\# = (\mathcal{S}^{-1}\mathcal{O})^\# \otimes _\mathcal {O} \mathcal{F} \]

as sheaves of $(\mathcal{S}^{-1}\mathcal{O})^\# $-modules.

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EMB. Beware of the difference between the letter 'O' and the digit '0'.