18.44 Localizing sheaves of rings
Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{S} \subset \mathcal{O} be a sub-presheaf of sets such that for all U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) the set \mathcal{S}(U) \subset \mathcal{O}(U) is a multiplicative subset, see Algebra, Definition 10.9.1. In this case we can consider the presheaf of rings
\mathcal{S}^{-1}\mathcal{O} : U \longmapsto \mathcal{S}(U)^{-1}\mathcal{O}(U).
The restriction mapping sends the section f/s, f \in \mathcal{O}(U), s \in \mathcal{S}(U) to (f|_ V)/(s|_ V) for V \to U in \mathcal{C}.
Lemma 18.44.1. In the situation above the map to the sheafification
\mathcal{O} \longrightarrow (\mathcal{S}^{-1}\mathcal{O})^\#
is a homomorphism of sheaves of rings with the following universal property: for any homomorphism of sheaves of rings \mathcal{O} \to \mathcal{A} such that each local section of \mathcal{S} maps to an invertible section of \mathcal{A} there exists a unique factorization (\mathcal{S}^{-1}\mathcal{O})^\# \to \mathcal{A}.
Proof.
Omitted.
\square
Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{S} \subset \mathcal{O} be a sub-presheaf of sets such that for all U \in \mathcal{C} the set \mathcal{S}(U) \subset \mathcal{O}(U) is a multiplicative subset. Let \mathcal{F} be a sheaf of \mathcal{O}-modules. In this case we can consider the presheaf of \mathcal{S}^{-1}\mathcal{O}-modules
\mathcal{S}^{-1}\mathcal{F} : U \longmapsto \mathcal{S}(U)^{-1}\mathcal{F}(U).
The restriction mapping sends the section t/s, t \in \mathcal{F}(U), s \in \mathcal{S}(U) to (t|_ V)/(s|_ V) if V \to U is a morphism of \mathcal{C}. Then \mathcal{S}^{-1}\mathcal{F} is a presheaf of \mathcal{S}^{-1}\mathcal{O}-modules.
Lemma 18.44.2. In the situation above the map to the sheafification
\mathcal{F} \longrightarrow (\mathcal{S}^{-1}\mathcal{F})^\#
has the following universal property: for any homomorphism of \mathcal{O}-modules \mathcal{F} \to \mathcal{G} such that each local section of \mathcal{S} acts invertibly on \mathcal{G} there exists a unique factorization (\mathcal{S}^{-1}\mathcal{F})^\# \to \mathcal{G}. Moreover we have
(\mathcal{S}^{-1}\mathcal{F})^\# = (\mathcal{S}^{-1}\mathcal{O})^\# \otimes _\mathcal {O} \mathcal{F}
as sheaves of (\mathcal{S}^{-1}\mathcal{O})^\# -modules.
Proof.
Omitted.
\square
Comments (0)