Exercise 111.62.1 (Definitions). Provide brief definitions of the italicized concepts.
a constructible subset of a Noetherian topological space,
the localization of an $R$-module $M$ at a prime $\mathfrak p$,
the length of a module over a Noetherian local ring $(A, \mathfrak m, \kappa )$,
a projective module over a ring $R$, and
a Cohen-Macaulay module over a Noetherian local ring $(A, \mathfrak m, \kappa )$.
Comments (0)