Lemma 18.26.1. Let $\mathcal{C}$ be a site. Let $\mathcal{O}$ be a presheaf of rings. Let $\mathcal{F}$, $\mathcal{G}$ be presheaves of $\mathcal{O}$-modules. Then $\mathcal{F}^\# \otimes _{\mathcal{O}^\# } \mathcal{G}^\# $ is equal to $(\mathcal{F} \otimes _{p, \mathcal{O}} \mathcal{G})^\# $.
Proof. Omitted. Hint: use the characterization of tensor product in terms of bilinear maps below and use the universal property of sheafification. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)