The Stacks project

Remark 18.27.3. Let $f : (\mathcal{C}, \mathcal{O}_\mathcal {C}) \to (\mathcal{D}, \mathcal{O}_\mathcal {D})$ be a morphism of ringed sites. Let $\mathcal{F}, \mathcal{G}$ be sheaves of $\mathcal{O}_\mathcal {D}$-modules. There is a canonical map

\[ f^*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G}) \]

Namely, this map is adjoint to the map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G}) \longrightarrow f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G}) \]

defined as follows. Say $f$ is given by the continuous functor $u : \mathcal{D} \to \mathcal{C}$. For sections over $V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ we use the map

\begin{align*} \Gamma (V, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{F}, \mathcal{G})) & = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ V}(\mathcal{F}|_ V, \mathcal{G}|_ V) \\ & \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{u(V)}}(f^*\mathcal{F}|_{u(V)}, \mathcal{G}|_{u(V)}) \\ & = \Gamma (u(V), \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G})) \\ & = \Gamma (V, f_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{F}, f^*\mathcal{G})) \end{align*}

where for the arrow we use pullback by the morphism $(\mathcal{C}/u(V), \mathcal{O}_{u(V)}) \to (\mathcal{D}/V, \mathcal{O}_ V)$ induced by $f$.


Comments (1)

Comment #9528 by nkym on

after the second last should be instead.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GMX. Beware of the difference between the letter 'O' and the digit '0'.